284 research outputs found

    Electron Quasiparticles Drive the Superconductor-to-Insulator Transition in Homogeneously Disordered Thin Films

    Full text link
    Transport data on Bi, MoGe, and PbBi/Ge homogeneously-disordered thin films demonstrate that the critical resistivity, RcR_c, at the nominal insulator-superconductor transition is linearly proportional to the normal sheet resistance, RNR_N. In addition, the critical magnetic field scales linearly with the superconducting energy gap and is well-approximated by Hc2H_{c2}. Because RNR_N is determined at high temperatures and Hc2H_{c2} is the pair-breaking field, the two immediate consequences are: 1) electron-quasiparticles populate the insulating side of the transition and 2) standard phase-only models are incapable of describing the destruction of the superconducting state. As gapless electronic excitations populate the insulating state, the universality class is no longer the 3D XY model. The lack of a unique critical resistance in homogeneously disordered films can be understood in this context. In light of the recent experiments which observe an intervening metallic state separating the insulator from the superconductor in homogeneously disordered MoGe thin films, we argue that the two transitions that accompany the destruction of superconductivity are 1) superconductor to Bose metal in which phase coherence is lost and 2) Bose metal to localized electron insulator via pair-breaking.Comment: This article is included in the Festschrift for Prof. Michael Pollak on occasion of his 75th birthda

    Absence of a Zero Temperature Vortex Solid Phase in Strongly Disordered Superconducting Bi Films

    Full text link
    We present low temperature measurements of the resistance in magnetic field of superconducting ultrathin amorphous Bi films with normal state sheet resistances, RNR_N, near the resistance quantum, RQ=e2R_Q={\hbar\over {e^2}}. For RN<RQR_N<R_Q, the tails of the resistive transitions show the thermally activated flux flow signature characteristic of defect motion in a vortex solid with a finite correlation length. When RNR_N exceeds RQR_Q, the tails become non-activated. We conclude that in films where RN>RQR_N>R_Q there is no vortex solid and, hence, no zero resistance state in magnetic field. We describe how disorder induced quantum and/or mesoscopic fluctuations can eliminate the vortex solid and also discuss implications for the magnetic-field-tuned superconductor-insulator transition.Comment: REVTEX, 4 pages, 3 figure

    First Astronomical Use of Multiplexed Transition Edge Bolometers

    Get PDF
    We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE'S detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Δλ/λ= 1/7 at a resolution of δλ/λ ≈ 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 µm and 450 µm bands. These bands cover line emission from the important star formation tracers neutral carbon [Cl] and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry

    Advanced code-division multiplexers for superconducting detector arrays

    Full text link
    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal-plane code-division multiplexers can be combined with multi-gigahertz readout based on superconducting microresonators to scale to even larger arrays.Comment: 8 pages, 3 figures, presented at the 14th International Workshop on Low Temperature Detectors, Heidelberg University, August 1-5, 2011, proceedings to be published in the Journal of Low Temperature Physic

    MUSTANG: 90 GHz Science with the Green Bank Telescope

    Full text link
    MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor bolometers read out using time-domain multiplexed SQUID electronics. As a continuum instrument on a large single dish MUSTANG has a combination of high resolution (8") and good sensitivity to extended emission which make it very competitive for a wide range of galactic and extragalactic science. Commissioning finished in January 2008 and some of the first science data have been collected.Comment: 9 Pages, 5 figures, Presented at the SPIE conference on astronomical instrumentation in 200

    Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    Get PDF
    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter

    The Bose Metal: gauge field fluctuations and scaling for field tuned quantum phase transitions

    Full text link
    In this paper, we extend our previous discussion of the Bose metal to the field tuned case. We point out that the recent observation of the metallic state as an intermediate phase between the superconductor and the insulator in the field tuned experiments on MoGe films is in perfect consistency with the Bose metal scenario. We establish a connection between general dissipation models and gauge field fluctuations and apply this to a discussion of scaling across the quantum phase boundaries of the Bose metallic state. Interestingly, we find that the Bose metal scenario implies a possible {\em two} parameter scaling for resistivity across the Bose metal-insulator transition, which is remarkably consistent with the MoGe data. Scaling at the superconductor-metal transition is also proposed, and a phenomenolgical model for the metallic state is discussed. The effective action of the Bose metal state is described and its low energy excitation spectrum is found to be ωk3\omega \propto k^{3}.Comment: 15 pages, 1 figur

    Fabrication of Microstripline Wiring for Large Format Transition Edge Sensor Arrays

    Get PDF
    We have developed a process to integrate microstripline wiring with transition edge sensors (TES). The process includes additional layers for metal-etch stop and dielectric adhesion to enable recovery of parameters achieved in non-microstrip pixel designs. We report on device parameters in close-packed TES arrays achieved with the microstrip process including R(sub n), G, and T(sub c) uniformity. Further, we investigate limits of this method of producing high-density, microstrip wiring including critical current to determine the ultimate scalability of TES arrays with two layers of wiring

    Dynamics of Flux Creep in Underdoped Single Crystals of Y_1-xPr_xBa_2Cu_3O_7-d

    Full text link
    Transport as well as magnetic relaxation properties of the mixed state were studied on strongly underdoped Y_1-xPr_xBa_2Cu_3O_7-d crystals. We observed two correlated phenomena - a coupling transition and a transition to quantum creep. The distribution of transport current below the coupling transition is highly nonuniform, which facilitates quantum creep. We speculate that in the mixed state below the coupling transition, where dissipation is nonohmic, the current distribution may be unstable with respect to self-channeling resulting in the formation of very thin current-carrying layers.Comment: 11 pages, 9 figures, Submitted to Phys. Rev.

    Impact of Improved Heat Sinking of an X-Ray Calorimeter Array on Crosstalk, Noise, and Background Events

    Get PDF
    The x-ray calorimeter array of the Soft X-ray Spectrometer (SXS) of the Astro-H satellite will incorporate a silicon thermistor array produced during the development of the X-Ray Spectrometer (XRS) of the Suzaku satellite. On XRS, inadequate heat sinking of the array led to several non-ideal effects. The thermal crosstalk, while too small to be confused with x-ray signals, nonetheless contributed a noise term that could be seen as a degradation in energy resolution at high flux. When energy was deposited in the silicon frame around the active elements of the array, such as by a cosmic ray, the resulting pulse in the temperature of the frame resulted in coincident signal pulses on most of the pixels. In orbit, the resolution was found to depend on the particle background rate. In order to minimize these effects on SXS, heat-sinking gold was applied to areas on the front and back of the array die, which was thermally anchored to the gold of its fanout board via gold wire bonds. The thermal conductance from the silicon chip to the fanout board was improved over that of XRS by an order of magnitude. This change was sufficient for essentially eliminating frame events and allowing high-resolution to be attained at much higher counting rates. We will present the improved performance, the measured crosstalk, and the results of the thermal characterization of such arrays
    corecore